27 research outputs found

    Novel strategies for process control based on hybrid semi-parametric mathematical systems

    Get PDF
    Tese de doutoramento. Engenharia Química. Universidade do Porto. Faculdade de Engenharia. 201

    an industrial E. coli case study

    Get PDF
    The authors thank Chi Chung (Tim) Choi and Paul Rice for their collaboration in batch production and performing off-line sample analysis and Carl Hémond for providing the RP-HPLC assay and results. The authors thank Paul Rice also for critical reading of the manuscript. © Copyright 2017 Elsevier B.V., All rights reserved.Process understanding is emphasized in the process analytical technology initiative and the quality by design paradigm to be essential for manufacturing of biopharmaceutical products with consistent high quality. A typical approach to developing a process understanding is applying a combination of design of experiments with statistical data analysis. Hybrid semi-parametric modeling is investigated as an alternative method to pure statistical data analysis. The hybrid model framework provides flexibility to select model complexity based on available data and knowledge. Here, a parametric dynamic bioreactor model is integrated with a nonparametric artificial neural network that describes biomass and product formation rates as function of varied fed-batch fermentation conditions for high cell density heterologous protein production with E. coli. Our model can accurately describe biomass growth and product formation across variations in induction temperature, pH and feed rates. The model indicates that while product expression rate is a function of early induction phase conditions, it is negatively impacted as productivity increases. This could correspond with physiological changes due to cytoplasmic product accumulation. Due to the dynamic nature of the model, rational process timing decisions can be made and the impact of temporal variations in process parameters on product formation and process performance can be assessed, which is central for process understanding.publishersversionpublishe

    Modelling biochemical networks with intrinsic time delays: a hybrid semi-parametric approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This paper presents a method for modelling dynamical biochemical networks with intrinsic time delays. Since the fundamental mechanisms leading to such delays are many times unknown, non conventional modelling approaches become necessary. Herein, a hybrid semi-parametric identification methodology is proposed in which discrete time series are incorporated into fundamental material balance models. This integration results in hybrid delay differential equations which can be applied to identify unknown cellular dynamics.</p> <p>Results</p> <p>The proposed hybrid modelling methodology was evaluated using two case studies. The first of these deals with dynamic modelling of transcriptional factor A in mammalian cells. The protein transport from the cytosol to the nucleus introduced a delay that was accounted for by discrete time series formulation. The second case study focused on a simple network with distributed time delays that demonstrated that the discrete time delay formalism has broad applicability to both discrete and distributed delay problems.</p> <p>Conclusions</p> <p>Significantly better prediction qualities of the novel hybrid model were obtained when compared to dynamical structures without time delays, being the more distinctive the more significant the underlying system delay is. The identification of the system delays by studies of different discrete modelling delays was enabled by the proposed structure. Further, it was shown that the hybrid discrete delay methodology is not limited to discrete delay systems. The proposed method is a powerful tool to identify time delays in ill-defined biochemical networks.</p

    Analysis of flux data sets

    Get PDF
    Deutscher Akademischer Austausch Dienst, Reference number: 6818.Background: Non-negative linear combinations of elementary flux modes (EMs) describe all feasible reaction flux distributions for a given metabolic network under the quasi steady state assumption. However, only a small subset of EMs contribute to the physiological state of a given cell. Results: In this paper, a method is proposed that identifies the subset of EMs that best explain the physiological state captured in reaction flux data, referred to as principal EMs (PEMs), given a pre-specified universe of EM candidates. The method avoids the evaluation of all possible combinations of EMs by using a branch and bound approach which is computationally very efficient. The performance of the method is assessed using simulated and experimental data of Pichia pastoris and experimental fluxome data of Saccharomyces cerevisiae. The proposed method is benchmarked against principal component analysis (PCA), commonly used to study the structure of metabolic flux data sets. Conclusions: The overall results show that the proposed method is computationally very effective in identifying the subset of PEMs within a large set of EM candidates (cases with ~100 and ~1000 EMs were studied). In contrast to the principal components in PCA, the identified PEMs have a biological meaning enabling identification of the key active pathways in a cell as well as the conditions under which the pathways are activated. This method clearly outperforms PCA in the interpretability of flux data providing additional insights into the underlying regulatory mechanisms.publishersversionpublishe

    Cell functional enviromics: Unravelling the function of environmental factors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While functional genomics, focused on gene functions and gene-gene interactions, has become a very active field of research in molecular biology, equivalent methodologies embracing the environment and gene-environment interactions are relatively less developed. Understanding the function of environmental factors is, however, of paramount importance given the complex, interactive nature of environmental and genetic factors across multiple time scales.</p> <p>Results</p> <p>Here, we propose a systems biology framework, where the function of environmental factors is set at its core. We set forth a "reverse" functional analysis approach, whereby cellular functions are reconstructed from the analysis of dynamic envirome data. Our results show these data sets can be mapped to less than 20 core cellular functions in a typical mammalian cell culture, while explaining over 90% of flux data variance. A functional enviromics map can be created, which provides a template for manipulating the environmental factors to induce a desired phenotypic trait.</p> <p>Conclusion</p> <p>Our results support the feasibility of cellular function reconstruction guided by the analysis and manipulation of dynamic envirome data.</p

    Comprehensive review of models and methods for inferences in bio-chemical reaction networks

    Get PDF
    The key processes in biological and chemical systems are described by networks of chemical reactions. From molecular biology to biotechnology applications, computational models of reaction networks are used extensively to elucidate their non-linear dynamics. The model dynamics are crucially dependent on the parameter values which are often estimated from observations. Over the past decade, the interest in parameter and state estimation in models of (bio-) chemical reaction networks (BRNs) grew considerably. The related inference problems are also encountered in many other tasks including model calibration, discrimination, identifiability, and checking, and optimum experiment design, sensitivity analysis, and bifurcation analysis. The aim of this review paper is to examine the developments in literature to understand what BRN models are commonly used, and for what inference tasks and inference methods. The initial collection of about 700 documents concerning estimation problems in BRNs excluding books and textbooks in computational biology and chemistry were screened to select over 270 research papers and 20 graduate research theses. The paper selection was facilitated by text mining scripts to automate the search for relevant keywords and terms. The outcomes are presented in tables revealing the levels of interest in different inference tasks and methods for given models in the literature as well as the research trends are uncovered. Our findings indicate that many combinations of models, tasks and methods are still relatively unexplored, and there are many new research opportunities to explore combinations that have not been considered—perhaps for good reasons. The most common models of BRNs in literature involve differential equations, Markov processes, mass action kinetics, and state space representations whereas the most common tasks are the parameter inference and model identification. The most common methods in literature are Bayesian analysis, Monte Carlo sampling strategies, and model fitting to data using evolutionary algorithms. The new research problems which cannot be directly deduced from the text mining data are also discussed
    corecore